Сегодня пойдет речь о трансивере "Радио-76" а точней о его модернизации, с позволения автора схемы я не стану его так называть, так как от трансивера " Радио-76" там мало чего осталось.
Дело в том что у меня был большой промежуток так сказать творческого кризиса, и я не занимался радио спортом, в связи с переездом из сельской местности в город, и у меня не было возможности установить антенну хотя-бы на один диапазон я отложил свое любимое дело на долгих 7 лет. Но мысли о моем любимом хобби не покидали меня, и я решил собрать себе трансивер, но возникла другая проблема о выборе схемы, и тут выбор упал на трансивер "Реверсивный тракт на биполярных транзисторах по мотивам Р-76" автор которой является Сергей Эдуардович US5MSQ http://us5msq.com.ua
P.S По секрету ))) На форуме Сергей Эдуардович активно отвечает на все вопросы которые возникнут в процессе сборки,за что нужно отдать должное, так как не все авторы своих "детище " так активно отвечают особенно на глупые вопросы. Проверенно лично.
Ниже я скину текст всех вопрос и ответов автора схемы которые возникали у других радиолюбителей которые собирали данный трансивер. От себя я скажу, если собирать внимательно, вопросов у Вас не должно возникнуть, так как у меня все заработать сразу, не считая моих ошибок в монтаже.
Ниже будут вырезки из постов с форума где радиолюбители обсуждали данный трансивер. Так как нет полного описания данной схемы, буду поступать таким методом.
Характеристики:
- Общий уровень собственных шумов - порядка 35-45мВ
- Общий Кус со входа смесителя - примерно 340-350тыс.
- Приведенный ко входу уровень шума - примерно 0,12мкВ, а чувствительность со входа смесителя при с/шум=10дБ получилась порядка 0,4мкВ
АРУ начинает срабатывать при уровне порядка 4-5мкВ (S5-6), при этом реально держит сигнал минимум до 15мВ (+50дБ).
И так приступим к самой схеме.
В конце статьи будет архив со всеми схемами для скачивания в полном размере.
Рис.1 Схема основной платы с картой напряжений.
Добавлю от себя, если соблюдать все напряжения которые указанны на схеме, вопросы по наладке сами по себе исчезнут.
Рис.2 Схема полосовых фильтров с аттенюатором и раскачивающим усилителем на VT1.
Рис.3 Схема ГПД.
Рис. 4 Схема ФНЧ и КСВ-метра.
Вырезка сообщений из форума
US5MSQ: Что касается намоточных данных трансформаторов - возможно применение любых имеющихся у вас ферритовых колец диаметром 7-12 мм и проницаемостью 600-3000, важно обеспечить индуктивность для первого смесителя не менее 50мкГ (порядка 60-80), а для детектора/модулятора не менее 170 (порядка 200-250 мкГн). Просчитать конкретное кол-во витков для вашего колечка можно по стандартным формулам, удобно воспользоваться табличкой, разработанной Ю. Морозовым.
Важно обеспечить идентичность обмоток в самом трансформаторе. Я делал так - отмерял линейкой три одинаковых проводника (16см для Тр1 и Тр2 и 24см для Тр3 и Тр4), зачищал и облуживал концы, спаяв одну сторону в виде иголочки (этой стороной в дальнейшем будем вести намотку), зажимал в тиски и скручивал руками до уровня примерно 3-х скруток на см. Намотку ведем равномерно укладывая витки до полного заполнения - на колечках 2000НН 7х4х2 (для Тр3 и Тр4 склеены по 2) получилось порядка 15-16 витков. Не забываем перед намоткой сгладить острые грани колечек наждаком или надфилем.
Ну и еще один важный момент, по расчету и изготовлению катушек связи. Их наматывают, как правило, поверх середины контурной, поверх края контурной ближе к заземленному концу или, если каркас секционный, в соседней с заземленным концом секции. В этих случаях для более точного отражения коэффициента связи (взаимоиндукции) вводим поправочный коэффициент - для 1-го случая порядка 1-1,05, второго - 1,1-1,2 и третьего -1,3-1,4. Таким образом, если мы намотаем катушку связи с числом витков 1/10 от контурной, реально это будет примерно соответствовать коэффициентам 1/10, 1/11 и 1/13.
US5MSQ: катушки для ПДФ можно выполнять практически на любых, имеющихся у вас каркасах, и результаты (основные параметры ПДФ) будут практически одинаковые при достаточно малых потерях, разумеется речь идет о правильно спроектированных, а таких из опубликованных основное большинство.
Причина в том, что относительная ширина современных диапазонов (160,80,40м) достигает 9-10%, а это значит, что нагруженная добротность контуров будет порядка 8-10, а даже самые "левые" катушки имеют конструктивную добротность не менее 40-50, поэтому потери даже в трехконтурных ПДФ как правило не превышают3дБ.
Выбор нами трехконтурных ДПФ обусловлен исключительно желанием получить подавление зеркалки как можно большим, для примера на 80 м диапазоне при ПЧ 500кГц это порядка 38-40дБ (80-100раз), немного конечно, но двухконтурные здесь вообще бесполезны (не более 24-26дБ или всего -то 15-20 раз).
US5MSQ: Настройка ДПФ. Если нет ГКЧ, то ДПФ можно настроить и ГСС (ВЧ генератор) и даже просто по максимуму шумов эфира. Если не уверены, что антенна (или ГСС) согласованная, т.е. имеет выходное сопротивление 50-75 ом, то можно на входе включить штатный аттенюатор -20дБ, что обеспечит согласованный режим по входу ПДФ при любом источнике сигнала. Настраиваем приемник на середину диапазона, подключаем к выходу УНЧ динамик(телефоны) и какой-нибудь индикатор выхода (осциллограф, вольтметр переменного напряжения и т.п.). Регулятор громкости на максимум. В процессе настройки во избежание влияния АРУ регулировкой выхода ГСС или штатной РРУ (при работе с антенной) поддерживаем выходное напряжение порядка 0,3-0,4В. Для получения правильной (оптимальной) АЧХ в этом ДПФ все контуры должны быть настроены в резонанс на середине диапазона. Методик настройки без ГКЧ описано много (в том числе и на этой ветке). Одна из самых простых состоит из двух шагов:
- временно шунтируем резистором 150-220 ом катушку среднего контура и настраиваем первый и третий контура по максимуму сигнала в середине диапазона, убираем шунт
- для настройки в резонанс среднего контура, шунтируем такими же резисторами катушки перового и третьего контуров, убираем шунты.Вот и все!
US5MSQ: Много крови попил S-метр, в первоначальном варианте это был даже не показометр - из-за большой крутизны управления АРУ стрелка стояла практически неподвижно при изменении сигнала на 70дБ. В Р-76М2 пошли по пути некоторого снижения крутизны управления, но это не на много улучшило ситуацию. Я отказался от уменьшения крутизны, т.к. сейчас работа АРУ мне нравится - можно не переживать и не дергаться к регулятору громкости, даже если рядом включился сосед с «киловаттом».
Было испытано несколько вариантов экспандеров, лучшие результаты (как по линейности, так и простоте схемы и регулировки) показала последняя схема (на Т5) -теперь выставляем только уровень S9(50мкВ) на середину шкалы, при этом шкала достаточна линейна до уровней +40дБ. В принципе немного отражаются и +50, +60дБ, но это практической ценности не представляет.
Показания этого простого S-метра никак не коррелируют с установками РРУ, что позволяет производить сравнительный отсчет уровней (наиболее часто востребованная функция) при любых установках усиления, правда точность будет невелика +- километр. Разумеется, что достаточно точный отсчет абсолютных уровней, как и сравнительный отсчет, будут возможны только при том усилении, при котором проводилась калибровка, в данном случае при Кус мах.
US5MSQ: Для получения хорошей селективности контуров, особенно первого, и устойчивой работы УПЧ индуктивность катушки не может быть любой, тем более чрезмерно (в разы) большей от оптимальной (в нашем случае 100мкГн).
US5MSQ:Рассматриваем последний вариант основной платы. В схеме применена электронная коммутация режимов RX/TX, для чего транзисторы Т11, Т13 включены на общий эмиттерный резистор R39. В режиме приема напряжение питания на микрофонный усилитель не подается, поэтому Т11 закрыт небольшим (порядка 0,28В) запирающим падением напряжения на R39, вызванным протеканием коллекторного тока Т13, величину которого выбираем по следующим соображениям.
Входное сопротивление этого каскада, включенного по схеме с ОБ, равно Rвх[ом]=0.026/I[мА]. Для обеспечения согласования со смесителем/детектором требуемые 50 ом получаются при токе 0,5мА. Кстати, при этом получаются и малые собственные шумы предУНЧ, что тоже немаловажно. При этом напряжение на коллекторе будет порядка 4,7+-0,5В, а на эмиттере Т14 примерно на 0,7В меньше, соответственно 4+-0,5В. При необходимости поточнее подобрать коллекторный ток Т13 можно резистором R47.
При переключении в режим ТХ, на микрофонный усилитель подается напряжение +9в TX SSB. Ток эмиттерного повторителя Т11 величиной порядка 9(+-1) мА, протекающий через общий R39, создает на нем падение напряжение 5(+-0,5)В, полностью запирающее Т13, отключая тем самым УНЧ. Естественно при этом напряжения на коллекторе Т13 и эмиттере Т14 будут близки к напряжению питания.
Но вернемся к микрофонному усилителю. При необходимости (большом отклонении) требуемый режим Т11 подбирается резистором R46.напряжение на коллекторе Т12 при этом будет порядка 6,2(+-0,6) В.
Резистор R40 выполняет двойную функцию - увеличивает выходное сопротивление эмиттерного повторителя до требуемых для нормального согласования модулятора 50-60 ом и ослабляет (делит) выходной сигнал МУО (максимальная амплитуда на выходе ограничителя порядка 0,25-0,28В) до уровня 0,15-0,18В, исключающего перегрузку модулятора при любых уровнях с микрофона и положениях движка R45.
US5MSQ: Надо соблюдать определенные правила перед первым включением!
Надо тщательно проверить монтаж на предмет ошибок!
Устанавливаем все регуляторы (РРУ,ГРОМКОСТИ, Уровень ТХ) на максимум, SA1 в положение SSB. Подав напряжение питания, желательно проконтролировать общий ток потребления - он не должен превышать 30мА. Далее проверяем режимы каскадов по постоянному току - на эмиттерах Т3, Т4, Т7, Т8 должно быть порядка +1...1,2В, эмиттере Т13 - порядка +0,26В (при необходимости требуемого добиваемся подбором R47).
Проверяем работу опорника - на правом выводе R50 должно быть переменное напряжение 0,7Вэфф (+-0,03В) частотой 500кГц. Если генерации нет, шунтируем кварц емкостью порядка 10-47нФ и сердечником L4 выставляем частоту генерации порядка 500кГц и убираем шунт - частота должна установиться точно 500кГц (+-50Гц). при сильном отличии величины напряжения, требуемого добиваемся подбором R58 и, возможно, С59. Если генерация не появилась и при шунтировании кварца, надо перебросить накрест выводы обмотки связи L4 и далее по приведенной выше методе.
Признаком нормальной работы детектора является заметное снижение шумов на выходе УНЧ при замыкании левого (по схеме) вывода резистора R50.
Настройку УПЧ тракта можно сделать традиционно с использованием ГСС (если он есть), но можно и своими, штатными, средствами. Для этого сначала настроим генератор CW - переключатель SA1 переводим в положение CW, замыкаем контакты ПЕДАЛЬ и КЛЮЧ. Подстройкой R11 устанавливаем на эмиттерах Т3, Т4, Т7, Т8 порядка +1...1,2В, т.е. пока, на время настройки, ставим усиление УПЧ в режиме ТХ на максимум. Подбором С34 (грубо) и триммером С39 (точно) добиваемся частоты генерации порядка 500,8-501кГц (точнее тональность подбираем под свой вкус (слух)при этом сигнал самоконтроля должен быть слышен в динамике). Уровень сигнала на эмиттере Т10 должен быть 0,7Вэфф+-0,1В -при необходимости подбираем R33. Подключаем осциллограф через высокоомный делитель или конденсатор 10-15пФ к катушки связи L1 и последовательной подстройкой сердечников катушек L2 (это резонанс контролируем по увеличению громкости самоконтроля ), L1 и затем триммеров С22,С18 добиваемся максимальных показаний осциллографа. При этих регулировках резонанс должен быть четкий и не на пределе регулировочных элементов -если это не так надо будет поточнее подобрать емкости соответственно С35, С5,С25 и С16.
На этом первичная настройка закончена, можно размыкать контакты ПЕДАЛИ и КЛЮЧа и наслаждаться приемом
US5MSQ: давайте рассмотрим настройку тракта передачи, она довольно проста благодаря примененным схемотехническим решениям.
К выходу подключаем настроенный ПДФ (это важно, т.к. без ПДФ выходной сигнал смесителя представляет собой адскую смесь из остатков ГПД, основной и зеркальной составляющей), нагруженный на 50 Ом. Определяющим является требование получить максимальный уровень полезного сигнала и исключить перегрузку (обеспечить линейный режим) модулятора и смесителя. При напряжении ГПД (опорника) порядка 0,6-0,7 достаточная линейность сохраняется при уровне сигнала не более 200мВ, оптимально порядка 120-150мВ. Для защиты модулятора при любых уровнях с микрофона от перегрузки применен диодный ограничитель D6, D7, ограничивающих амплитуду на эмиттере Т11 уровнем порядка 0,25В, а с учетом R40 на модулятор поступает не более 150мВ. Триммером R45 выставляем требуемый уровень ограничения (или его отсутствия) для конкретного микрофона.
При настройке достаточно движок R45 переместить вверх по схеме, т.е. на максимум усиления и подать на вход модулирующий сигнал порядка 20-50мВ и частотой 1-2кГц (не критично). Подстройкой контуров ПЧ и ЭМФ добиваемся максимума. Оптимальный уровень усиления тракта передачи выставляем триммером R11, добиваясь на нагрузке напряжения порядка 50-60мВ - это обеспечивает оптимальную работу смесителя. Переключаемся в CW и подбором С40 добиваемся на выходе ПДФ порядка 70-80мВ. Вот и вся настройка.
US5MSQ: Что касается режимов работы РРУ/АРУ. Глубина регулировки зависит от того, насколько сильно мы сможет уменьшить ток коллектора транзисторов УПЧ (как минимум до 10-20 мкА), исключив при этом их полное запирание. Т.е. нижний уровень напряжения управления, поступающего на базы транзисторов, для получения максимальной эффективности РРУ/АРУ должен быть зафиксирован на оптимальной для конкретного типа транзисторов величине, за это отвечают диоды D1(РРУ) и D2(АРУ). Для диодов типа 1N4148 при указанных на схеме номиналах 0R1 и R2 это, как правило, обеспечивается. При необходимости режимы можно подстроить - например если происходит полное запирание транзисторов в режиме РРУ, значит маловато падение напряжение на D1 - его можно немного повысить увеличением тока через диод (например, подключив параллельно доп. резистор), если недостаточно, то заменой на более удачный диод.
Если РРУ работает нормально, то в режиме АРУ при необходимости глубину регулировки корректируют подбором R2.
Что касается ГПД, то я его не делал, точней собрал, но из-за размеров моего корпуса, я отказался от него и собрал синтезатор частоты.
Немного видео о работе трансивера, когда он еще был на стадии настройки.
Скачать архив с документацией печатные платы в формате LAY
Разработка UV7QAE.
Синтезатор для КВ (160м, 80м, 40м, 20м, 15м, 10м) трансивера с преобразованием "вниз".
Контроллер STM32F100C8T6B в корпусе LQFP48. Синтез на Si5351a. Экран цветной 1,8" (ST7735), черно белый NOKIA 5510 (эконом вариант).
Энкодер решили не ставить на плату, это позволит применить энкодер любой по размерам так же разместить его в любом месте конструкции.
Можно отказаться вообще от энкодера так как можно управлять частотой кнопками INC и DEC.
Схема рассчитана на подключение оптического энкодера, так что если кто будет повторять ее с мех.энкодером поставьте RC фильтра по входам энкодера.
Печатная плата 85мм х 45мм в формате Sprint-Layout 6 под кнопки размером 6х6мм synthesizer_si5351_buttons_6x6M.lay
Для увеличения схемы, кликните левой клавишей мышки. Или просто скачать
Выход CLK0 - частота VFO.
Выход CLK1 - частота SSB BFO.
Выход CLK2 - частота CW BFO + CW TONE.
Можно установить реверс частот при передачи в "SYSTEM MENU" опция "TX REVERSE".
Опция "TX REVERSE" = ON,
OUTPUT | RX | TX |
CLK0 | VFO | SSB BFO |
CLK1 | SSB BFO | VFO |
CLK2 | CW BFO | CW BFO |
Кнопки.
Up, Dn - Вверх, вниз по диапазонам, меню.
Mode - Смена LSB, USB, CW в рабочем режиме, в меню для быстрого ввода частоты.
Menu - вход/выход в меню.
Выбор функций кнопок в "SYSTEM MENU" опция "BUTTON MODE".
VFO, Step - Переключение VFO A/B, Шаг перестройки частоты. В меню изменяет значения.
Или.
Inc(+), Dec(-) - перестройка по частоте в рабочем режиме. В меню изменяет значения.
01.FREQUENCY STEP | 1/5/10/50/100/500/1000 Hz | Шаг перестройки частоты |
02.ENC. DYNAMIC | ON/OFF | Динамическая скорость перестройки частоты. |
03.ENC. PRESCALER | 1-300 | Делитель энкодера. Перестройки частоты на один оборот энкодера. |
04.RIT FUNCTION | ON/OFF | Включение и выключение RIT. |
05.RIT SHIFT | +-1000Hz | Смещение частоты приема. |
01.BUTTON MODE | VFO/Step or Frequency | Функции кнопок |
02.ENC. REVERSED | YES/NO | Реверс энкодера |
03.ADC PRESCALER | 4-12 | Входной делитель напряжения 4 - 12 |
04.TX REVERSE | ON/OFF | Реверс частот на выходах VFO и BFO при передаче. |
05.OUTPUT CURRENT | 2mA - 8mA | Регулировка выходного напряжения CLK0, CLK1, CLK2 установкой тока выходов. |
06.BANDWIDTH SSB | 1000Hz - 10 000Hz | Полоса пропускания фильтра SSB. |
07.BANDWIDTH CW | 100Hz - 1000Hz | Полоса пропускания фильтра CW. |
08.VFO MODE | FREQ+IF,FREQ,FREQx2,FREQx4 | CLK0=VFO+BFO, CLK0=VFO, CLK0=(VFOx2), CLK0=(VFOx4) |
09.FREQ. BFO LSB | 100kHz - 100mHz | Частота ПЧ НБП. |
10.FREQ. BFO USB | 100kHz - 100mHz | Частота ПЧ ВБП. |
11.FREQ. BFO CW | 100kHz - 100mHz | Частота ПЧ CW. |
12.FREQ. SI XTAL | 100kHz - 100mHz | Тактовая частота Si5351a (коррекция). |
13.BANDS CODE | YES/NO | Формировать на выводах двоичный код управления для дешифратор/мультиплексор. |
14.BINARY CODE | YES/NO | Двоичный код для дешифратора иначе код для мультиплексора FST3253. |
15.S-METER 1 | 0mV - 3300mV | Калибровка S Метра. |
16.S-METER 9 | 0mV - 3300mV | Калибровка S Метра. |
17.S-METER +60 | 0mV - 3300mV | Калибровка S Метра. |
18.RANGE 1-30 MHz | YES/NO | Сплошной диапазон 1 - 30 МГц. WARC 30М, 16М, 12М. |
19.BAND WARC | ON/OFF | Только в режиме RANGE 1-30MHz = YES |
20.BAND 160M | ON/OFF | Выбор работающих диапазонов трансивера (приемника) |
21.BAND 80M | ON/OFF | Выбор работающих диапазонов трансивера (приемника) |
22.BAND 40M | ON/OFF | Выбор работающих диапазонов трансивера (приемника) |
23.BAND 20M | ON/OFF | Выбор работающих диапазонов трансивера (приемника) |
24.BAND 15M | ON/OFF | Выбор работающих диапазонов трансивера (приемника) |
25.BAND 10M | ON/OFF | Выбор работающих диапазонов трансивера (приемника) |
26.LSB MODE | ON/OFF | Выбор модуляции трансивера (приемника) |
27.USB MODE | ON/OFF | Выбор модуляции трансивера (приемника) |
28.CW MODE | ON/OFF | Выбор модуляции трансивера (приемника) |
29.LOW POWER OFF | ON/OFF | Авто выключение, сохранение текущих данных. |
30.LOW VOLTAGE | 5.0V - 14.0V | Порог напряжения авто выключения. |
31.STATUS RCC | RCC HSI/RCC HSE | Источники тактирования, Внутренний/Кварц. |
BANDS | Pin BAND 160 | Pin BAND 80 | Pin BAND 40 | Pin BAND 20 |
01.BAND 160M | 0 | 0 | 0 | 0 |
02.BAND 80M | 1 | 0 | 0 | 0 |
03.BAND 40M | 0 | 1 | 0 | 0 |
04.BAND 30M | 1 | 1 | 0 | 0 |
05.BAND 20M | 0 | 0 | 1 | 0 |
06.BAND 16M | 1 | 0 | 1 | 0 |
07.BAND 15M | 0 | 1 | 1 | 0 |
08.BAND 12M | 1 | 1 | 1 | 0 |
09.BAND 10M | 0 | 0 | 0 | 1 |
Источник: https://ut5qbc.blogspot.com
Представляю Вашему вниманию усилитель мощности для КВ трансивера на полевых транзисторах IRF510.
При входной мощности порядка 1 ватта, на выходе легко получается 100-150 ватт.
сразу прошу извинения за качество схемы.
Усилитель двухкаскадный. Оба каскада выполнены на популярных и дешёвых ключевых мосфетах,что выгодно отличает данную конструкцию от многих других.Первый каскад - однотактный. Согласование по входу с источником сигнала 50 Ом достигнуто не самым лучшим, но простым способом - применением на входе резистора R4 номиналом 51 Ом. Нагрузкой каскада является первичная обмотка междукаскадного согласующего трансформатора. Каскад охвачен цепью отрицательной обратной связи для выравнивания частотной характеристики. L1, входящая в эту цепь, уменьшает ООС в области высших частот и тем самым поднимает усиление. Такую же цель преследует установка C1 параллельно резистору в истоке транзистора. Второй каскад - двухтактный. С целью минимизации гармоник применено раздельное смещение плеч каскада. Каждое плечо также охвачено цепью ООС. Нагрузка каскада - трансформатор Tr3, а согласование и переход на несимметричную нагрузку обеспечивает Tr2. Смещение каждого каскада и соответственно - ток покоя, выставляются раздельно при помощи подстроечных резисторов. Напряжение на эти резисторы подаётся через ключ PTT на транзисторе Т6. Переключение на TX происходит при замыкании точки PTT на землю. Напряжение смещения стабилизировано на уровне 5в интегральным стабилизатором. В целом очень несложная схема с хорошими эксплуатационными характеристиками.
Теперь о деталях. Все транзисторы усилителя - IRF510. Можно применить и другие, но с ними можно ожидать увеличения завала усиления в области частот выше 20Мгц, так как входная и проходная ёмкости транзисторов IRF-510 наиболее низкие из всей линейки ключевых мосфетов. Если удастся найти транзисторы MS-1307, то можно рассчитывать на значительное улучшение работы усилителя в области высших частот. Но вот дорогие они… Индуктивность дросселей Др1 и Др2 некритична - они намотаны на кольцах из феррита 1000НН проводом 0.8 в один слой до заполнения. Всё конденсаторы - smd. Конденсаторы С5,С6 и особенно - С14, С15 должны иметь достаточную реактивную мощность. При необходимости можно применить несколько конденсаторов,включённых в параллель. Для обеспечения качественной работы усилителя необходимо особое внимание уделить изготовлению трансформаторов. Тr3 намотан на кольце из феррита 600НН внешним диаметром 22мм и содержит 2 обмотки по 7 витков. Наматывается в два провода, которые слегка скручиваются. Провод - ПЭЛ-2 0.9.
Тr1 и Tr2 - выполнены по классической конструкции одновиткового ШПТ (aka "бинокль"). Tr1 выполнен на 10 кольцах (2 столба по 5) из феррита 1000НН диаметром 12мм. Обмотки выполнены толстым проводом МГТФ. Первая содержит 5 витков,вторая - 2 витка. Хорошие результаты даёт выполнение обмоток из нескольких включенных в параллель проводов меньшего сечения. Tr2 выполнен с использованием ферритовых трубочек,снятых с сигнальных шнуров мониторов. Внутрь их отверстий плотно вставлены медные трубки,которые и образуют один виток - первичную обмотку. Внутри намотана вторичная обмотка, которая содержит 4 витка и выполнена проводом МГТФ. (7 проводов в параллель). В данной схеме отсутствуют элементы защиты выходного каскада от высокого КСВ, кроме встроенных конструктивных диодов, которые эффективно защищают транзисторы от "мгновенных" перенапряжений на стоках. Защитой от КСВ занимается отдельный узел, построенный на базе КСВ-метра и снижающий питающее напряжение при росте КСВ выше определённого предела. Эта схема - тема отдельной статьи. Резисторы R1-R4,R7-R9,R17,R10,R11 - типа МЛТ-1.R6 - МЛТ-2. R13,R12 - МЛТ-0.5. Остальные - smd 0.25 вт.
Немного о конструктивен:
Усилитель должен быть смонтирован на достаточно большом радиаторе, принудительное воздушное охлаждение весьма желательно. Вся схема располается на печатной плате из двухстороннего стеклотекстолита, где одна сторона используется как сплошной экран, а на второй сформированы резаком дорожки. Выводы резисторов должны быть максимально короткими для уменьшения паразитных индуктивностей. Особенно это касается резисторов в истоках транзисторов. Иногда даже полезно удалить их начисто,а пайку осуществлять прямо за колпачки выводов. При испытании двухтоновым сигналом усилитель развил мощность до 150 ватт при сохранении высокой линейности и имеет завал АЧХ на наивысшей частоте КВ диапазона около 4дб относительно 3Мгц. Настройка сводится к установке токов покоя каскадов по наименьшей величине гармоник. При отсутствие приборов это можно сделать, прослушивая частоты второй-третьей гармоники приёмником.
Доброе время суток! В данной статье буду добавлять частями видео обзора сборки трансивера 60-х годов. Владимир Семяшкин провел огромную работу по конструированию и подробному видео отчете, сборки трансивера 60-х годов.
Что само больше меня поразила, так это качество сборки, и размещению всех узлов в корпусе.
Часть №1
Часть №2
Часть №3
Часть №4
Часть №5
Часть №6
Часть №7
Часть №8
Часть №9
Часть №10
Часть №11
Часть №12
Продолжение следует
Для начала я скажу почему так сильно слежу за темой о трансивере "Аматор-160"
Все потому что это был мой первый трансивер который заработал при первом включение, но потом по обстоятельствам мне пришлось переехать в город и тут уже не было возможности развернуть антенну на 160м. Ну и еще как-то 160 метровый диапазон опустел все начали подыматься выше по частоте. Я уже публиковал данную схему у себя на сайте. А тут речь пойдет о доработках.
Недостатки замеченные при повторении трансивера:
При повторении трансивера в первую очередь был применен выходной каскад, на широкодоступных транзисторах позволяющий получить выходную мощность порядка 15 ват. При подводимой мощности около 30 ват. Использование транзистора КТ 805А обеспечивает высокую надежность каскада, поскольку напряжение коллектор эмиттер этого транзистора составляет порядка 160 вольт, что позволяет выдерживать при работе обрыв нагрузки, а так же не слишком высокая граничная частота усиления благоприятно сказывается на устойчивости выходного каскада к самовозбуждению. При использовании транзистора КТ805АМ мощность придется несколько понизить.
Транзистор выходного каскада закреплен на задней дюралевой панели корпуса через слюдяную прокладку, транзистор предварительного каскада закреплен непосредственно на шасси, поскольку коллектор заземлен. В процессе испытаний и эксплуатации трансивер работал без согласующего устройства на различные куски провода произвольной длины, вообще без нагрузки, на лампу накаливания 220В 100 ват и выхода транзисторов из строя не наблюдалось.
Схема выходного каскада приведена на рис.1
Дроссель (номинал не указанный на схеме) намотан проводом пэл 0,5-0,7 мм ( на ферритовом кольце или на куске феррита число витков 20-25 не критично). Использование транзисторов разной проводимости позволило у простить схему.
Следующее неудобство отсутствие тонального генератора при настройке и отсутствие АРУ при приеме станций привожу схему данного блока (рис.2)
В качестве тонального генератора и усилителя Ару используется схема взятая из трансивера UW3DI- II (легко повторяется и прилично работает. Монтаж этого блока и усилителя мощности производился на пятачках и зависел от места расположения на шасси поскольку аппараты были все маленькие и конструкция шасси сильно отличалась. Прибор показывает силу сигналов в режиме приема и ток в антенне в режиме передачи (при подключении согласующего устройства добиваемся максимума)
Вход усилителя АРУ подключен к выходу микросхемы УНЧ и для того чтобы ручная регулировка УНЧ не влияла на показания S метра, регулятор установлен после усилителя НЧ перед телефонами.
На рис.3 привожу доработанную схему основной платы.
Чертежи доработанных печатных плат приведены на рис. 4
Выход 14 основной платы подключен через контакты педали (тумблер прием передача) и при передаче заземляется.
При повторении трансивера наблюдалось плохое подавление несущего сигнала. Причина плохого подавления скрывается в высокой чувствительности микросхем смесителей, что приводит к наводкам и прямому попаданию сигнала гетеродинов, как через емкости монтажа, так и через емкости контактов реле коммутации гетеродинов. Для устранения необходимо ввести дополнительные резисторы, шунтирующие обмотки трансформаторов смесителей основной платы номинал резисторов должен быть одинаковым для обоих смесителей от 100 до 200 ом, что полностью устраняло этот недостаток, при этом обратите внимание на одинаковость ферритовых колец. Желательно брать эти кольца из одного и того же источника (можно использовать чашки от ПЧ контуров транзисторного приемника при этом они должны быть из одного приемника, донышки сточить на наждачном камне, оставить только «юбочки»). Трансформаторы мотаются двумя скрученными между собой проводами марки ПЭЛ (3-5 скруток на 1см) перед намоткой кольцо произолировать фторопластовой или целлофановой лентой. Также эти резисторы являются нагрузкой для обоих гетеродинов и позволяют снизить напряжение на входе смесителя до приемлемого значения. Напряжение 500кГц на балансном модуляторе должно иметь уровень 50-100мВ (подбирается резистором R7), напряжение ГПД 100-150мВ(подбирается изменением номинала конденсатора С54 платы ГПД как правило в сторону уменьшения). При изготовлении желательно установить панельки под микросхемы К174ПС1 поскольку очень часто при покупке попадаются бракованные микросхемы и вам возможно придется подобрать их.
Если балансный модулятор при передаче вообще не балансируется, замените микросхему. Также для более плавной балансировки можно балансировочный резистор составить из 3х резисторов, как правило, внесение этих изменений оказывается вполне достаточно.
Вызвана медленным разрядом электролитического конденсатора С39 микросхемы УНЧ который при передаче заряжается через резистор R17 и диод до напряжения + 12В, запирающего микросхему УНЧ. Устраняется установкой дополнительного резистора со 2й ножки микросхемы на массу (10*к) что позволит более быстро разряжать конденсатор и переходить на прием.
Причина транзистор КТ603 и дроссель в цепи коллектора. Для устранения замените этот транзистор на КТ 3102 а дроссель резистором 100-150ом.
Устраняется установкой дополнительных электролитических конденсаторов и дополнительного резистора в цепи питания микрофона.
Применяются более доступные реле на напряжение питания 24-27В, они запитываются от источника питания 33В, через дополнительный резистор 30-500 ом подбирается так, чтобы напряжение на обмотках реле в режиме передачи было равно номинальному напряжению реле.
При изготовлении нескольких трансиверов использовались контура на секционированных каркасах от СВ или ДВ контуров транзисторных приемников. Контура были установлены на основную плату их не обязательно экранировать. Обмотка контура равномерно распределена по секциям каркаса, вместо отвода используется дополнительная обмотка связи, ( намотана в секцию с заземленным выводом) что позволяет более точно подобрать связь приемного тракта с антенной. Катушки L2 и L3 по 50 витков катушки связи L1* и L4 по 8-10 витков провод ПЭЛ 0,25
При отсутствии готового трансформатора блока питания со средним отводом можно применить трансформатор без отвода с переменным напряжением 25-33В на ток 1А и собрать блок питания по приведенной ниже схеме Дополнительный резистор проволочный мощностью 7-10 ват и его номинал будет зависеть от напряжения на вторичной обмотке 10-56 ом, критерий подбора чтобы не грелась кренка и при передаче напряжение 12В оставалось стабильным.
Если вы хочите собрать свой первый трансивер! тогда эта схема для Вас мой первый трансивер был Аматор-160.
Основой этого трансивера послужила микросхема SA612. Узлы примененные в трансивере взяты от других аппаратов, так что нового и оригинального здесь ничего нет.
Кликние для увиличения
Для приема и передачи используется принцип "Радио-76" "ТОРС-160" , что сократило количество микросхем. Естественно, каких либо сверх параметров ожидать не приходиться, но "оно" работает, что вполне хватит для начала.
Телеграфная часть взята от трансивера"UT2FW", УНЧ от YES-97, идея АРУ по ПЧ у RW4HDK, да и другие узлы взяты из разных схем как простые и понятные в повторении. Схему самого АРУ можно взять от этих трансиверов.
ОЭП-13 в открытом состоянии имеет сопротивление около 100 ом и на чувствительность практически не влияет (применяют же переменные резисторы в роли аттенюаторов). Можно обойтись по УНЧ одной LM386, но при работе на динамик "маловато будет". Кварцевый фильтр -стандартный 6-ти резонаторный, на 9 мегагерц. В принципе, если трансивер нужен только для SSB, телеграфный гетеродин можно использовать как опорник.
Файл печатной платы в Lay